

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Bicycle accidents, risks and potential for drive assistance systems

DTC Dynamic Test Center AG CH-2537 Vauffelin

Bernhard Gerster, CEO

Raphael Murri, head of passive safety Sandro Caviezel, engineer of passive safety

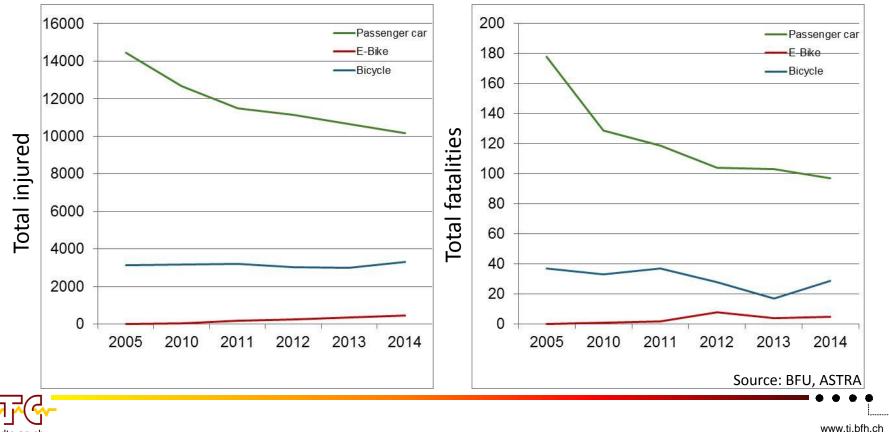
Bike crash test with car

Bicycle accidents, risks and potential for drive assistance systems:

FAMES, Biel School of Engineering and Informatics (CH), Automotive Technology Department

Content

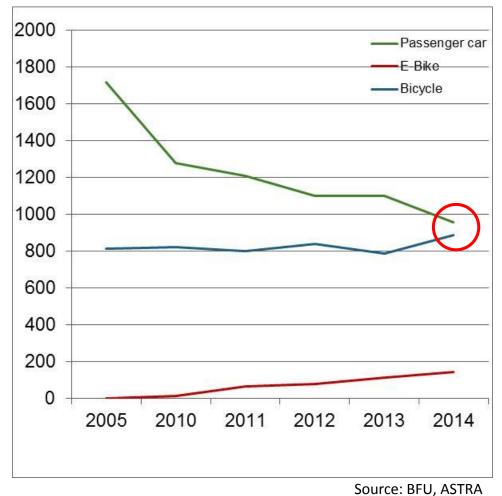
- 1. Safety for cyclists
- 2. Typical accident scenarios with bicycles
- 3. Risks and potential for drive assistant systems
- 4. Summary



Source: youtube

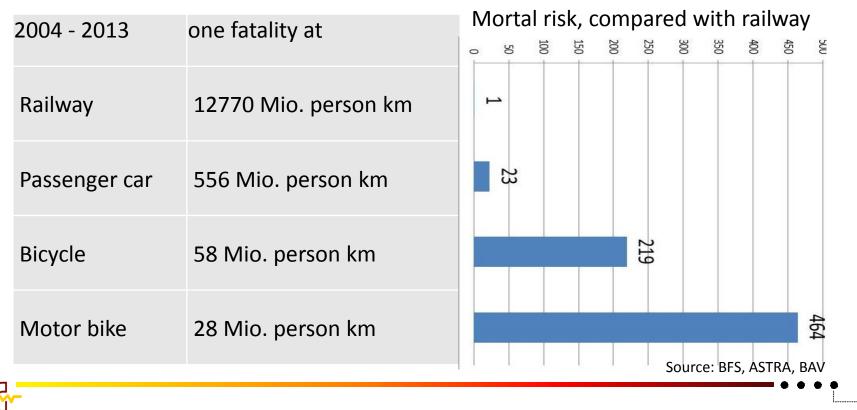
www.dtc-ag.ch

Accident statistics CH:

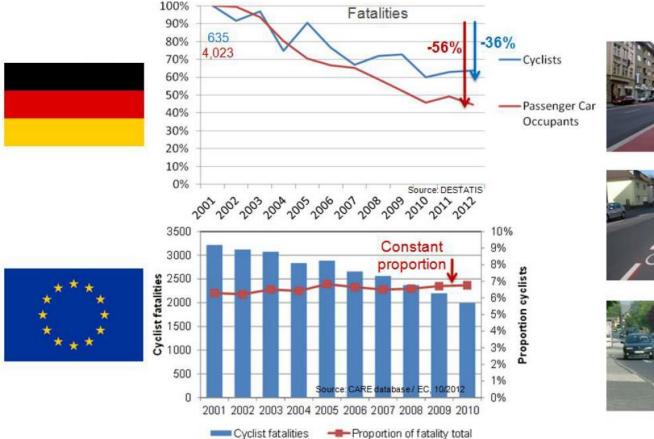

- Positive development of traffic safety by reduction of injured and fatalities in passenger cars
- The number of injured and fatalities on cyclist accidents stays constant, number of injured E-bikers increases

Accident statistics CH:

- Number of seriously injured cyclists stayed constant
- 2014 on same level as on passenger cars
- With E-bike in total more seriously injured than on passenger car


Seriously injured

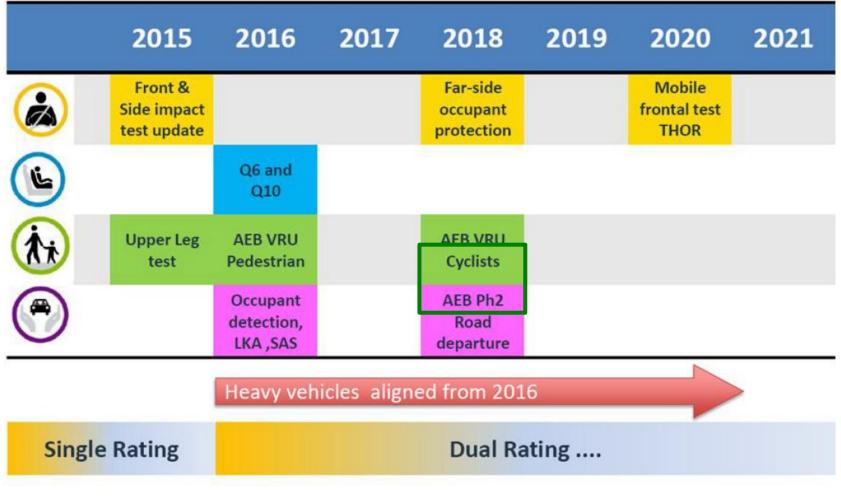
www.dtc-ag.ch


- Compared to passenger cars, the fatality risk on bicycles is 10 x higher, from the age of 70 years, the accident risk rises significantly
- Of 48% accident caused by passenger car / 42% by cyclists
- High potential on safety measurements for two wheel vehicles
- 2015 were 2/3 of fatalities on E-Bike older than 65

dtc-ag.ch

Accident statistics EU:

Same trend of fatally injured cyclists in Germany and Europe

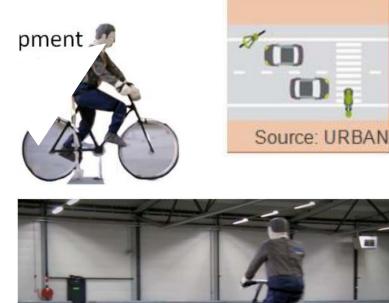

Source: PGV

www.ti.bfh.ch

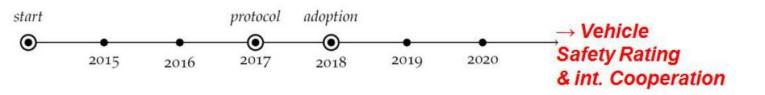
Source: PGV

In CH on E-Bikes > 25 km/h a bike helmet must be used

EuroNcap Road Map 2020: Rating for AEB VRU Cyclists from 2018



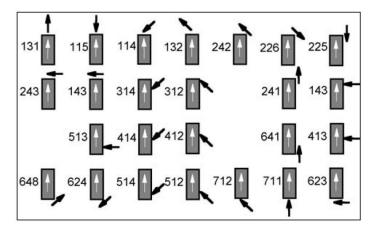
Source: EuroNcap, Director & Professor Andre Seeck



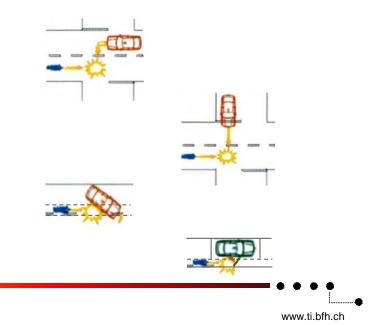
Update AEB VRU for pedal cyclist:

- In daylight, darkness and obscure lighting conditions
- Representative for EU28
- Different sources needed
- Bicycle dummy and propulsion system under development
- Harmonization

Source: EuroNcap, Director & Professor Andre Seeck



Typical accident scenarious with bicycles


- Car PTW collision configurations according to ISO 13232:
- 25 collision configurations
- Most of them are also relevant for cyclists

Typical cyclist accidents:

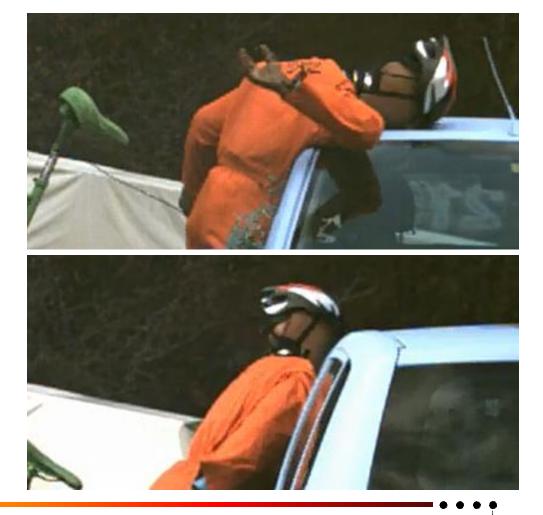
- Turn collision: miscalculation of distance and velocity (E-bike)
- Crossing collision: miscalculation and obstructed view (A-pillar)
- Push collision: blind spot
- Open door on parked car: missing mirror

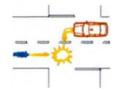
Source: ISO 13232

Facility for the acceleration of cyclists:

- Sled with guidance rail for wheels, like a catapult
- Holding device for bike, saddle bar
- Holding device for ATD, armpits
- Pedestrian HIII 50% ATD, with bike helmet (CH)
- In-dummy DAS

Risks and potential for drive assistant systems Turn collision:

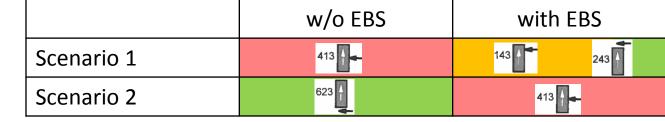

- Miscalculation of distance and velocity
- High risks for E-bike


Side collision E-bike 45 km/h

- Impact to cant rail & roof
- Forehead not protected by the helmet
- Loads on thorax to high

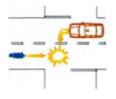
Side collision bike 25 km/h

- Impact to cant rail
- Forehead protected by the helmet
- No biomechanical limits exceeded



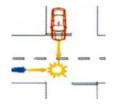
Turn collision – findings:

- Injury risk essentially influenced by
 - impact velocity of bike
 - helm protection of forehead not ideal


impact location on car structure; cyclist-safety for cant rail & roof ?

With EBS main influence on impact location

- Scenario 1
 - probability for "free flight"
 - risk of changed impact scenario (243)
 - high injury risk by secondary impact on road surface
- Scenario 2


in worst case the accident occurs because of EBS action

Crossing collision:

- Miscalculation of distance and velocity
- Obstructed view by A-pillar
- High risk for E-bike
- Knee-impact location to bumper higher (lower injury risk)
- Head-impact location to wind screen
 - in tendency higher than on pedestrians
 - similar impact velocity
- Temple protected by the helmet
- High loads on head, below biomechanical limits (primary & secondary impact)

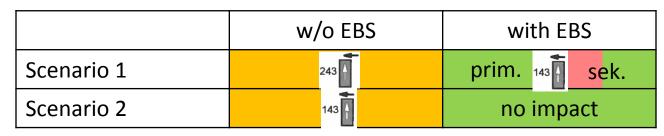
Front-Side collision with reduced impact velocity (EBS)

Lower impact energy

Test prim. Imp.	HIC
40 km/h (50 % ATD)	408
20 km/h (50 % ATD)	74
25 km/h (P3 ATD)	725

Depending on kinematic critical loads on head by secondary impact on road surface

Test sec. Imp.	НІС
40 km/h (50 % ATD)	30
20 km/h (50 % ATD)	707
25 km/h (P3 ATD)	1403

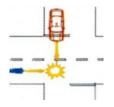


v₀ = 20 km/h

П °<

Crossing accident – findings:

- Injury risk essentially influenced by
 - impact velocity of car
 - good helm protection for temple
 - impact location on car structure; extended cyclist-safety area
- With EBS main influence on impact velocity and location



- Scenario 1
 - ${}^{\textcircled{r}}$ reduced impact velocity \rightarrow lower injury risk
 - $^{\mbox{\tiny GP}}$ risk of changed impact scenario \rightarrow example A-pillar
 - high injury risk by secondary impact on road surface

Scenario 2

in best case the accident can be avoided because of EBS action

Push away collision:

- Blind spot
- Obstructed view
- Car and bike with just same velocity (low impact velocity)
- Possible head impact to wind screen, A-pillar or cant rail
- Temples and back of head protected by the helmet
- Low injury risk by primary impact

High injury risk (HIC P3 777) by secondary impact or run over


v₀ = 10 km/h

Push away collision – findings:

- Injury risk essentially influenced by
 impact velocity of car
 - good helmet protection
 - secondary impact or run over

Possible assistant systems

- Blind spot assist
- Blind spot monitoring
- Lane Change Assistant

Source: Mercedes-Benz

www.ti.bfh.ch

• Multi collision brake \rightarrow autonomous brake after collision with a bike

...

With this for bike detection expanded systems, most accidents could be avoided

- Risks: information overload for driver
 - question of guilt, if accident occurs

Collision with open door on parked car:

- Blind spot
- Missing mirror during door opening
- Injury risk depending on impact velocity, impact location to door and stiffness
- Thorax impact to door frame
- Low risk for head impact
- High injury risk by secondary impact

www.ti.bfh.ch

= 40 km/h

°

Push away collision – findings:

- Injury risk essentially influenced by
 - impact velocity of bike, high risk for E-bike
 - door stiffness
 - secondary impact helmet

Example of assistant system

- Audi exit warning
 - optical and acoustic warning
 - resistance for door opening in discussion

With this system most accidents could be avoided

Source: Audi

Risks: system failure

www.dtc-ag.ch

Summary

Pedestrian safety on cars for cyclists?

- Similar head contact area on vehicles as pedestrians
 - \rightarrow pedestrian safety also for cyclists helpful
 - \rightarrow in tendency higher positioned, extension to cant rail and door frame?
- Injury risk for cyclists compared to pedestrians
 - \rightarrow Better protection with helmet
 - helmet obligatory, for all bikers?
 - bad protection for forehead high quality differences
 - good bike helmet is better than a bad motorcycle helmet, and a good bike helmet as a comparable protection
 - \rightarrow Often higher impact velocity
 - extended energy
 - absorption needed
 - high risk with E-bikes

E-bike with motorcycle helmet

Summary

Assistant systems:

- Complexes impact scenarios
 - → different bicycles, different front geometry
 - \rightarrow different drive assistant systems are needed
- AEB best effect on frontal collision situations
 - \rightarrow A reduction of the impact velocity by min. 20 km/h reduces serious head injuries
 - → Depending on kinematics higher loads on head can result by secondary impact (road surface) with reduced impact velocity

www.ti.bfh.ch

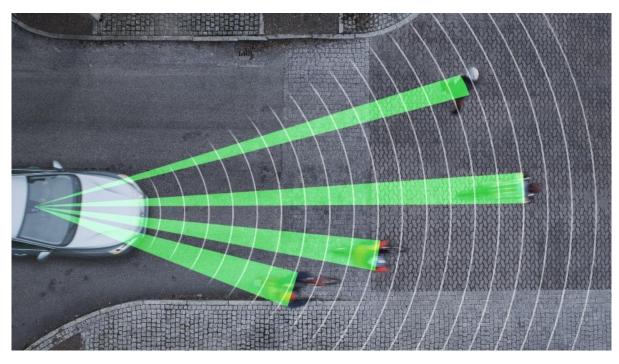
Other systems can be extended for cyclists

Summary

•••

Questions for accident analytics:

- Would the accident occur without assistant intervention?
- Should the assistant system had work in the specific accident?



Thank you for your attention!

It is the time to start with cyclist safety

→ by hold automotive industry AND cyclists accountable

Volvo EBS with cyclist detection assistant

Concept study with a belted cyclist

